
X-ray Timing Analysis

Does My Source Vary?

On What Time Scales Does it Vary?

Are the Variations Periodic or Aperiodic?

How Do Different Energy Bands Relate to One Another?

*Michael Nowak - Chandra X-ray Science Center/MIT

The Questions That We’d Like to Answer:

*(With Some Judicious Stealing of Slides from Z. Arzoumanian’s 2003 X-ray Astronomy School Talk) 



Characteristic Time Scales:

τ≥ 1000 sec                       108  M     (AGN)

τ≥ 100 μsec                      10   M      (BHC)

τ≥ 75 μsec                        1.4  M      (NS)

τ≥ R/V,   V ≤  c,   R ≥ 2 GM/c2

These are the Fastest Achievable Time Scales.  In Reality, 
There Can be Variability on a Range of Time Scales.
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X 1820-303    (11 minute orbit)

180 Day Superorbital Period msec QPO



Rotational Periods:

Accretion Time Scales:
Dynamical, Thermal, Viscous 
	 Time Scales
msec - days  for NS/BHC
minutes - years for AGN

msec - sec  for NS/WD
hr - days for Stars

Orbital Time Scales:
minutes to days for NS/BHC
Suber-orbital periods: 
	 weeks to months



What are the Tools of the Trade?
Spectra:  XSPEC; Sherpa, ISIS - A Few Hardy Souls Run Their Own

Timing:  Xronos - Which Some People Use

Most People “Roll Their Own”

Custom Fortran/C Code

IDL or MATLAB

Me: Converting over to S-lang run Under ISIS/Sherpa      
(http://space.mit.edu/CXC/analysis/SITAR                          
- contributions welcome!)



Timing Starts with a Lightcurve
Different Spacecraft can have different 
tools for creating Lightcurves

ftools, dmtools, xselect

Always choose integer multiple of 
“natural” time unit for binning

Don’t bin any more than you have to - 
save it for subsequent analysis

Example: dmextract infile="4u2129_chandra.fits 
[EVENTS] [sky=region(source.reg)][bin time=::1.14104]" 
outfile=4u2129_ps.fits opt=ltc1 



Length & Binning Determine Limits 
Lowest Frequency:  flong = 1/T

Highest Frequency: Nyquist Frequency, 
fNyq = 1/(2 t)

Basic Question, is the Variance:                                                          
.
                                                                             

Greater than Expected from Poisson 
Noise?

σ = Root Mean Square Variability

T,  N=T/ t
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= 〈x2〉 − 〈x〉2



Variability Test I: Excess Variance
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µXi ± σiBinned Lightcurve with Values:                      and mean:       

See Turner et al. 1999, ApJ, 524, p. 667 ; Nandra et al. 1997, ApJ, 476, p. 70



Test II: Kolmogorov-Smirnov
Technique for determining whether two 
cumulative distributions are the same.

Example: Is cumulative arrival time 
consistent with constant rate?

Could have instead done distribution of 
times inbetween events.

See Press et al., “Numerical Recipes”, 
plus lots of other better statistics books

Only answers whether there is variability 
- doesn’t characterize it 

Significance = 8 X 10-5

D = Maximum Deviation

Observed Arrival Time 
Distribution

Uniform Rate 
Distribution



Ninja Topic: Bayes Stats
Bayesian Methods Don’t Require Binning 
(Case below: event times only!)

Gregory & Loredo (1992, ApJ, 398, p. 
146) - Determines Optimal Uniform 
Binning. (Eventually a Ciao Version)

Bayesian Blocks (J. Scargle, in prep.) - 
Determines Optimal Non-uniform 
Binning.  (S-lang Version on SITAR page)

Drawbacks: No ‘Frequentist’ Significance 
Levels.  Only ‘Odds Ratios’ or ‘Penalty 
Factors’.

 t = fits_read_col("4u2129_chandra.fits",”time”);
cell = sitar_make_data_cells(t,2,0.7,1.14104,min(t),max(t));
ans = sitar_global_optimum(cell,3.5,2);



Fourier Transform Methods

The Workhorse of the Timing World
How is Variability Power Distributed as a Function of Frequency?                                                                                           

{



Fast Fourier Transform (FFT)

Lightcurve with: N bins, Comprised of Counts, xi, becomes Power Spectrum, with N/2+1 
independent Amplitudes, and N/2-1 independent Complex Phases (for Real Inputs)
Good FFTs Usually Optimized for N = Power of 2 (RXTE Clock Runs in Powers of 2!)

Know Your Normalization!!! Various FFT Routines Have Different Ones!

Power Spectrum is the Squared Fourier Amplitude, Properly Normalized

Power Spectrum is Throwing Out Information! Not Unique!

Xj ≡

N−1∑

k=0

xk exp(2πijk/N) , j = [−N/2, . . . , 0, . . . , N/2]

Pj = 2|Xj |
2/(Rate × Ttotal)

Pj = 2|Xj |
2/(Rate2 × Ttotal) (“One Sided” RMS Normalization)

(“One Sided” Leahy Normalization)



Ninja Topic: Convolution/Cross 
Correlation Theorem

Power Spectral Density (PSD, or Power Density Spectrum/PDS) is just the Fourier 
Transform of the Auto-correlation Function (i.e., h(t) = g(t)).
Cross Power Spectral Density (CPD) is just the Fourier Transform of the Cross-
correlation Function

h ∗ g (t) ≡

∫
∞

−∞

h(τ)g(t + τ) dτ

G(f) ≡ F [g(t)] ≡

∫
∞

−∞

g(t)e−2πift dt

F [h ∗ g] = F ∗(f)G(f)



FFT Normalizations
Leahy: Poisson Noise Level = 2, Intrinsic Power Scales as Rate
RMS: Intrinsic Power Independent of Rate, Noise Level = 2/Rate
Integral of PSD is Measure of Root Mean Square Variability
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PSD Normalizations are Often Plotted as (RMS)2/Hz

Pulsed Fraction (Coherent Oscillation): fp =

√
2(PLeahy − 2)
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PSD Statistics
Leahy Noise Level is 2 +/- 2  (Distributed as         with 2 DoF)

Increasing Lightcurve Length Doesn’t Help - Distributes Noise 
Among More Frequency Bins!

“Statistically Stationary Processes” Have Power = Pj +/- Pj 

Reduce Noise by Averaging PSD from Individual Lightcurve 
Segments, as Well as Over (Usually Logarithmically Spaced) 
Adjacent Frequency Bins

Errors Reduced by Factor of:

χ
2

√
Navg



Effective Noise Level

Example: Cyg X-1  (RXTE)

Nowak et al. 1999, ApJ, 510, p. 874

“Band Limited Noise”
White Noise

Red Noise

∝ 1/
√

f



With: You Can Fit ModelsP ′

j = (Pj − Pnoise) ± Pj/
√

Navg

Note: Total RMS = Incoherent Sum of Components, i.e., 
(∑

i

RMS
2

i

)1/2

Advice: Fit Models that Average over Frequency Bin Widths



Quasi-Periodic Oscillations (QPO)

Q-value (Coherence) = f/ΔfFWHM 

Width Can Come From: Finite Length of Data Segment, Finite 
Duration of Signal, Random Walk in Phase (e.g., Damped, 
Driven Oscillators), Random Walk in Frequency, ...



Ninja Topic: Deadtime

Detector ‘Deadtime’ = When a Photon Event Prevents Subsequent Events from Being 
Detected (‘Paralyzable’ /‘Non-paralyzable’ is When an Event During the Deadtime 
Does/Does Not Increase the Length of the Deadtime), or ...

When the Detector Does Not Take Data, e.g., during Readout (e.g., Chandra), or ...

Deadtime Modifies the Power Spectrum of Poisson Noise from the Expected        
PLeahy = 2     (Usually to Something < 2) 

See: Zhang et al. 1995, ApJ, 449, p. 930; Morgan et al. 1997, 482, p. 993; Nowak 
et al. 1999, ApJ, 510, p. 874



Proposal Estimates
Detecting Broad Band Noise at the       confidence level:

 

Detecting Coherent Pulsations:

 

For Broad Band Timing, You Win More with Rate than Time

Searches for Coherent Pulsations (e.g., Pulsars) are Best Done 
Unbinned
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Coherent Pulsations:
Barycentering the data (fxbary/axbary) important.

Short Data Segments, to Search for (Binary) Orbital Variation



Ninja Topic: Aliasing!
Signal Can Appear at Sum and Difference Frequencies of Primary Signals
This is True Whether the Signal is “Real” or “Fake” (e.g., Sampling Periods)
Beware Characteristic Times!  Spacecraft orbits, dither time scale, 1 year, ...
Example: RXTE-All Sky Monitor - Many sources show periods at 24 hours +/- a small 
bit.  This is the beating of a large power 1/Many Year Secular Change with a 24 
hour sample Period (e.g., from AGN monitoring).



Ninja Topic: Phase Info
There are Statistics That Also Deal with Fourier Phase - Cross Correlations!
Gives the Frequency Dependent Time-lag between Hard and Soft Components
See: Vaughan & Nowak 1997, ApJ, 474, L43; Nowak et al. 1999, ApJ, 510, p. 874



Ninja Topic: Cross Correlations

Complex Phase is Called the “Phase Lag”, 
Divided by 2πf is Called the “Time Lag”
Keep track of signs! Depending upon Algorithm, 
and Whether You Use Forward or Backward 
Transform, that Can Alter the Sign.  (See Nowak 
et al. for Associating this with Lag/Lead.)
Υ2(f) is the “Coherence Function” (Distinct from 
Coherence, Q!).  Measures Degree of Linear 
Correlation.

〈CPD〉 =
〈H∗G〉

(〈|H|2〉〈|G|2〉)1/2
, γ2(f) ≡

|〈H∗G〉|2

〈|H|2〉〈|G|2〉



Epoch Folding & Period Searches
Good for Non-sinusoidal Variations
Good for When there are Data Gaps or Complicated  Window Functions
Not Good for Aperiodic Variability

event = sitar_readasm("xa_x1820-303_d1",,,1.2);
fld = sitar_epfold_rate(event.time,event.rate,10,500,20,2000);
xlabel("Trial Period"); ylabel("L Statistic");
plot(fld.prd,fld.lstat);

Xronos has epoch folding, various IDL
routines can be found on the web.

Read the literature on significance levels!



Reiterating Words of Advice:

Bin the Lightcurve on Integer Multiples of “Natural” Time Scales

Do FFTs with Evenly Spaced Bins (Lomb-Scargle for Unevenly Spaced Bins), and Avoid 
Data Gaps (see literature if dealing with Gaps)

Beware of Signals that Appear on Characteristic Time Scales (of Spacecraft, Earth, etc.)

Large Literature with Many Techniques for Those with Strong Kung Fu



References for Further Reading

van der Klis, M. 1989, “Fourier Techinques in X-ray Timing”, in Timing Neutron Stars, 
NATO ASI 282, Ögelman & van den Heuvel eds., Kluwer

Press et al., “Numerical Recipes”  (Discussions Only!  Better Code Exists on the Web!)

Leahy et al. 1983, ApJ, 266, p. 160        (FFT & PSD Statistics)

Leahy et al. 1983, ApJ, 272, p. 256        (Epoch Folding)

Davies 1990, MNRAS, 244, p. 93            (Epoch Folding Statistics)

Vaughan et al. 1994, ApJ, 435, p. 362   (Noise Statistics)


